ApplicationCharacterizationCustomer publicationsMaterialParticle interactionsProteins & DNA/RNASAXSStructural biologyTechnique

X-ray Scattering and Coarse-Grained Simulations for Clustering and Interactions of Monoclonal Antibodies at High Concentrations

Dear, Barton J.; Bollinger, Jonathan A.; Chowdhury, Amjad; Hung, Jessica J.; Wilks, Logan R.; Karouta, Carl A.; Ramachandran, Kishan; Shay, Tony Y.; Nieto, Maria P.; Sharma, Ayush; Cheung, Jason K.; Nykypanchuk, Dmytro; Godfrin, P. Douglas; Johnston, Keith P.; Truskett, Thomas M.

By 27 January 2020No Comments

The Journal of Physical Chemistry B, 2019, vol 123, 25, pp. 5274-5290

DOI:10.1021/acs.jpcb.9b04478

Abstract

Attractive protein–protein interactions (PPI) in concentrated monoclonal antibody (mAb) solutions may lead to reversible oligomers (clusters) that impact colloidal stability and viscosity. Herein, the PPI are tuned for two mAbs via the addition of arginine (Arg), NaCl, or ZnSO4 as characterized by the structure factor (Seff(q)) with small-angle X-ray scattering (SAXS). The SAXS data are fit with molecular dynamics simulations by placing a physically relevant short-range attractive interaction on selected beads in coarse-grained 12-bead models of the mAb shape. The optimized 12-bead models are then used to differentiate key microstructural properties, including center of mass radial distribution functions (gCOM(r)), coordination numbers, and cluster size distributions (CSD). The addition of cosolutes results in more attractive Seff(q) relative to the no cosolute control for all systems tested, with the most attractive systems showing an upturn at low q. Only the All1 model with an attractive site in each Fab and Fc region (possessing Fab–Fab, Fab–Fc, and Fc–Fc interactions) can reproduce this upturn, and the corresponding CSDs show the presence of larger clusters compared to the control. In general, for models with similar net attractions, i.e., second osmotic virial coefficients, the size of the clusters increases as the attraction is concentrated on a smaller number of evenly distributed beads. The cluster size distributions from simulations are used to improve the understanding and prediction of experimental viscosities. The ability to discriminate between models with bead interactions at particular Fab and Fc bead sites from SAXS simulations, and to provide real-space properties (CSD and gCOM(r)), will be of interest in engineering protein sequence and formulating protein solutions for weak PPI to minimize aggregation and viscosities.

Visit the full article

Back to the overview