Beam performance for microdiffraction

- **Measurement:** Small areas, Mapping capability, High resolution, Short time
- **Beam distribution in:** Real space, Angular space, Wave-length or energy, Time
- **Beam generation:** Source brilliance, Optics efficiency, Beam path

Brilliance: Ph/mm²/mrad²/s in relevant part of spectrum
- Brilliance starts with the SOURCE.
- At best, optics beam path preserves brilliance while transforming beam to a useful (optimum) distribution in phase-space.

Aspheric multilayer coated optics (FOX 3D)

- X-ray multilayer coatings: high reflectivity, monochromatic beam
- Highly curved aspheric substrates: large collection angles, small spot size

Advanced X-ray optics

- FOX 3D preserves brilliance and focuses the X-ray beam on the sample
- Small spot configuration, High flux configuration

Beam distribution in: Real space, Angular space, Wave-length or energy, Time

Brightness Indicator

Microfocus sources with aspheric multilayer optics for stress analysis on micro-area

Sergio Rodrigues, Olivier Pacaud, Dan Cenda, Peter Høghøj*

* peter.hoeghoj@xenocs.com

Source-optic coupling for microdiffraction

- Microfocus sources provide very high brilliance at low power (better heat dissipation)

Features

- Low Power Source (30 or 50W)
- Compact system
- Control & Command unit
- Safety & Fast Shutters
- Remote Operation (Ethernet)

Benefits

- Low power consumption
- High brilliance
- Easy to integrate
- Ease of use
- Space clearance from sample
- Low maintenance
- Extreme beam stability

Test on a Fe 211 sample

GeniX: The x-ray beam delivery concept

- Integrated system for optimized source optic coupling

Features

- High X-ray beam stability

Benefits

- Measurement time: 18 Hours
- Flux Variation: < +/- 0.2%

Application test with ultra-fast detector Meteor1D

In collaboration with GE Sensing & Inspection Technologies

Test on a Fe 211 sample

The complete solution for microdiffractometer

- A new GeniX platform optimized for integration

Monochromatic Beam

Integrated system for optimized source optic coupling

- Microfocus sealed tube (14W;36kV/0.4mA)
- Single reflection multilayer optic
- Evacuated beampath
- Flux (Cr-Kα) > 10 Mph/s under vacuum
- Processing gain is ~4000 (compared to a pinhole placed at 38 cm from source)

Divergence < 1°

- Beam size at focus of 25 x 19 µm FWHM

Longer Stand-Off

- 20 up to 170°

Flux Variation (%) - Time (hours)

Results:

- Flux Variation: < +/- 0.2%
- Measurement time: 18 Hours

With Meteor1D detector

Data Courtesy of Rainer Stabenow, GE Sensing & Inspection Technologies

Evacuated beampath

High Intensity

Small Spot

- Beam size at focus of 25 x 19 µm FWHM

Divergence < 1°

Integrated system for optimized source optic coupling

- Microfocus sources provide very high brilliance at low power (better heat dissipation)

Measurement: Small areas, Mapping capability, High resolution, Short time

Beam distribution in: Real space, Angular space, Wave-length or energy, Time

Beam generation: Source brilliance, Optics efficiency, Beam path

Brilliance: Ph/mm²/mrad²/s in relevant part of spectrum

- Brilliance starts with the SOURCE.
- At best, optics beam path preserves brilliance while transforming beam to a useful (optimum) distribution in phase-space.

Aspheric multilayer coated optics (FOX 3D)

- X-ray multilayer coatings: high reflectivity, monochromatic beam
- Highly curved aspheric substrates: large collection angles, small spot size

Advanced X-ray optics

- FOX 3D preserves brilliance and focuses the X-ray beam on the sample
- Small spot configuration, High flux configuration

Beam distribution in: Real space, Angular space, Wave-length or energy, Time

Brightness Indicator

Microfocus sources with aspheric multilayer optics for stress analysis on micro-area

Sergio Rodrigues, Olivier Pacaud, Dan Cenda, Peter Høghøj*

* peter.hoeghoj@xenocs.com

Source-optic coupling for microdiffraction

- Microfocus sources provide very high brilliance at low power (better heat dissipation)

Features

- Low Power Source (30 or 50W)
- Compact system
- Control & Command unit
- Safety & Fast Shutters
- Remote Operation (Ethernet)

Benefits

- Low power consumption
- High brilliance
- Easy to integrate
- Ease of use
- Space clearance from sample
- Low maintenance
- Extreme beam stability

Test on a Fe 211 sample

GeniX: The x-ray beam delivery concept

- Integrated system for optimized source optic coupling

Features

- High X-ray beam stability

Benefits

- Measurement time: 18 Hours
- Flux Variation: < +/- 0.2%

Application test with ultra-fast detector Meteor1D

In collaboration with GE Sensing & Inspection Technologies

Test on a Fe 211 sample

The complete solution for microdiffractometer

- A new GeniX platform optimized for integration

Monochromatic Beam

Integrated system for optimized source optic coupling

- Microfocus sources provide very high brilliance at low power (better heat dissipation)

Measurement: Small areas, Mapping capability, High resolution, Short time

Beam distribution in: Real space, Angular space, Wave-length or energy, Time

Beam generation: Source brilliance, Optics efficiency, Beam path

Brilliance: Ph/mm²/mrad²/s in relevant part of spectrum

- Brilliance starts with the SOURCE.
- At best, optics beam path preserves brilliance while transforming beam to a useful (optimum) distribution in phase-space.

Aspheric multilayer coated optics (FOX 3D)

- X-ray multilayer coatings: high reflectivity, monochromatic beam
- Highly curved aspheric substrates: large collection angles, small spot size

Advanced X-ray optics

- FOX 3D preserves brilliance and focuses the X-ray beam on the sample
- Small spot configuration, High flux configuration

Beam distribution in: Real space, Angular space, Wave-length or energy, Time

Brightness Indicator

Microfocus sources with aspheric multilayer optics for stress analysis on micro-area

Sergio Rodrigues, Olivier Pacaud, Dan Cenda, Peter Høghøj*

* peter.hoeghoj@xenocs.com

Source-optic coupling for microdiffraction

- Microfocus sources provide very high brilliance at low power (better heat dissipation)

Features

- Low Power Source (30 or 50W)
- Compact system
- Control & Command unit
- Safety & Fast Shutters
- Remote Operation (Ethernet)

Benefits

- Low power consumption
- High brilliance
- Easy to integrate
- Ease of use
- Space clearance from sample
- Low maintenance
- Extreme beam stability

Test on a Fe 211 sample

GeniX: The x-ray beam delivery concept

- Integrated system for optimized source optic coupling

Features

- High X-ray beam stability

Benefits

- Measurement time: 18 Hours
- Flux Variation: < +/- 0.2%

Application test with ultra-fast detector Meteor1D

In collaboration with GE Sensing & Inspection Technologies

Test on a Fe 211 sample

The complete solution for microdiffractometer

- A new GeniX platform optimized for integration

Monochromatic Beam

Integrated system for optimized source optic coupling

- Microfocus sources provide very high brilliance at low power (better heat dissipation)